
Levitate Python Toolbox
Release 3.0.0

Carl Andersson

Mar 02, 2022

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 737087.

Contents

1 Introduction 3

2 Package Organization and Functionality 3
2.1 Models . 3
2.2 Algorithms . 3
2.3 Visualization . 3
2.4 Workflow . 4

3 Examples 4
3.1 Simple trap optimization. 4
3.2 Complicated transducer array setup . 5
3.3 Superposition of two fields . 5
3.4 Visualizing the force around a trap . 6

4 API Documentation 7
4.1 Transducers . 7
4.2 Arrays . 13
4.3 Fields . 18

4.3.1 Sound Fields . 19
4.3.2 Radiation Force . 20
4.3.3 Gor’kov . 21
4.3.4 Spherical Harmonics Forces . 22

4.4 Optimization . 23
4.5 Utilities . 25

4.5.1 Visualization . 27
4.5.2 Materials . 28
4.5.3 Hardware . 30

4.6 Field Wrappers . 31
4.6.1 Class list . 31

5 Changelog 35
5.1 Unreleased . 35
5.2 2.4.2 - 2020-03-09 . 35

5.2.1 Removed . 35
5.2.2 Added . 35
5.2.3 Changed . 35

5.3 2.4.1 - 2020-02-17 . 35
5.3.1 Added . 35
5.3.2 Changed . 35

5.4 Pre 2.4 . 35

References 35

2

1 Introduction

This is the documentation for the Levitate research project python toolbox. The toolbox is distributed
as an open source python package, hosted on the Chalmers Applied Acoustics GitHub (https://github.com/
AppliedAcousticsChalmers/levitate). The primary goal of this toolbox is to provide a collection of algorithms
and design patterns to aid researchers working with acoustic levitation and related topics, e.g. mid-air haptic feed-
back or parametric audio. Included are both basic building blocks for simulating ultrasonic transducer arrays, and
beamforming algorithms to design sound fields for specific purposes.

The package targets two major groups: Researchers who primarily focus on developing new algorithms used to
design the sound fields, and researchers who use the existing algorithms to investigate areas of application, e.g.
within human-computer interaction. The first group requires the possibility of fast prototyping of new algorithms
or schemes. The inherent transparency in the python language together with the flexible and extensible design of
the toolbox fulfills this requirement. The second group needs simple and reliable tools to quickly design a sound
field according to the needs of the application. This is covered by the variety of algorithms existing in the toolbox,
and the ease at which they can be applied in varying configurations. Not considered at this point are end-users.
The tools still require significant knowledge of the operator and, to a certain degree, understanding of the physical
limitations.

2 Package Organization and Functionality

This section covers a broad overview of the package, for a more detailed description see the sections in the full API
Documentation. The package is created using the de facto numerical and scientific computing libraries for python,
Numpy and Scipy. There are three major parts to the toolbox: models, algorithms, and visualization.

2.1 Models

The primary responsibility of the models component is to provide means for easy handling of virtual ultrasonic
transducer arrays and their elements. This is the foundation on which the other parts build, with methods to calculate
sound fields from arbitrary arrays arrangements. This part of the package in class-oriented, organized in two
python modules. The arrays module with the primary class TransducerArray handles collections of individual
transducer elements, i.e. arrays, operating all elements as a whole. The transducers module with the primary
class TransducerModel handles single transducers and their radiation characteristics.

2.2 Algorithms

The algorithms component of the package collects the sound field design methods under a unified framework. The
current implementation covers optimization of transducer array amplitudes and phases according to a set of cost
functions. All the cost functions have a physical interpretation such as the force on a small bead of a specific size,
or the sound pressure at a certain point.

2.3 Visualization

Visualization of data is a complicated topic, and visualization in python in particular comes in many flavors. For
the purposes of this toolbox, the main concern is to quickly verify that the design algorithms deliver the intended
result. To this end, a small set of tools are implemented using the Plotly graphing library, which has good support
for interactive visualizations. The current implementation is focused on providing representations of the sound
field generated by an array.

3

https://github.com/AppliedAcousticsChalmers/levitate
https://github.com/AppliedAcousticsChalmers/levitate
http://www.numpy.org
http://www.scipy.org
https://plot.ly/python/

2.4 Workflow

Designing a sound field for a specific application involves choosing appropriate combinations of cost functions and
optimization routines. A typical workflow from application specification to result is:

1) Specify what the sound field should do; Levitate a bead.

2) Find the appropriate mathematical formulation and choose the equivalent cost functions; Maximize the
Gor’kov Laplacian and minimize the sound pressure

3) Choose an optimization routine; minimization with fixed amplitudes

4) Run the optimization.

5) Visualize the resulting sound field.

6) Export the result to use with a physical array.

For more detailed descriptions of workflows, refer to the Examples.

3 Examples

3.1 Simple trap optimization.

A very basic use-case, finding the correct phases to levitate a bead centered 5 cm above a 9x9 element rectangular
array, then inspecting the resultant field.

[1]: import numpy as np
import levitate

We define a target trap position and a transducer array. The optimizaiton typically converges from random initial-
ization, but we can help it on the way by initializing close to a known nice solution.

[2]: pos = np.array([0, 0, 80e-3])
array = levitate.arrays.RectangularArray(9)
phases = array.focus_phases(pos) + array.signature(stype='twin') + 0.2 * np.random.
→˓uniform(-np.pi, np.pi, array.num_transducers)
start = levitate.complex(phases)

To find the suitable state of the transducer array, we define a cost function that we minimize with a BFGS-variant
optimization.

[3]: point = (levitate.fields.GorkovLaplacian(array) * (-100, -100, -1)).sum() +␣
→˓abs(levitate.fields.Pressure(array))**2 * 1e-3
results = levitate.optimization.minimize(point@pos, array, start_values=start)

Finally, we visualize the sound field.

[4]: array.visualize[0] = ['Signature', pos]
array.visualize.append('Pressure')
array.visualize(results).show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4

3.2 Complicated transducer array setup

The setup shown here is a doublesided array where the two halves are standing vertically 3 cm above a reflecting
surface.

In this example no optimization is done, but all optimization functions support complex arrangements like this one.

[1]: import numpy as np
import levitate

Reflections from planar reflections are handled as a transducer object. In this case, we wrap a CircularPiston
object, to include some directivity as well.

[2]: transducer = levitate.transducers.TransducerReflector(
levitate.transducers.CircularPiston, effective_radius=3e-3,
plane_intersect=(0, 0, 0), plane_normal=(0, 0, 1))

The transducer array is created by using the DoublesidedArray class, which takes the type of array to use as the
singlesided template as one of the inputs.

[3]: array = levitate.arrays.DoublesidedArray(
levitate.arrays.RectangularArray, separation=200e-3,
normal=(1, 0, 0), offset=(0, 0, 50e-3),
shape=(5, 10), transducer=transducer

)

We visualize the sound pressure field, as well as the velocity magnitude field.

[4]: phases = array.focus_phases(np.array([25e-3, 0, 40e-3]))
amps = levitate.complex(phases)
array.visualize.zlimits = (0, 0.1)
array.visualize.append('Pressure')
array.visualize.append('Velocity')
array.visualize(amps).show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

3.3 Superposition of two fields

A more advanced usage, designed to create a field with a levitation trap and a haptics focus point.

[1]: import numpy as np
import levitate

[2]: array = levitate.arrays.RectangularArray((21, 12))
trap_pos = np.array([-20e-3, 0, 60e-3])
haptics_pos = np.array([40e-3, 0, 90e-3])
phases = array.focus_phases(trap_pos) + array.signature(trap_pos, stype='twin') + 0.2␣
→˓* np.random.uniform(-np.pi, np.pi, array.num_transducers)
start = levitate.complex(phases)

The fields are superposed using mutual quiet zones, created by minimizing the pressure and velocity at the sec-
ondary point in each field. We will need three fields, calculating the pressure magnitude, the velocity magnitude,
and the stiffenss of the trap.

5

[3]: p = abs(levitate.fields.Pressure(array))**2
v = (abs(levitate.fields.Velocity(array))**2).sum()
s = levitate.fields.RadiationForceStiffness(array).sum()

The levitation trap is found using a minimization sequence. First the phases are optimized for just a trap, then the
phases and amplitudes are optimized to include the quiet zone.

[4]: trap_result = levitate.optimization.minimize(
[

(s + p * 1)@trap_pos,
(s + p)@trap_pos + (v * 1e3 + p)@haptics_pos

],
array, start_values=start, variable_amplitudes=[False, True]

)[-1]

The haptics point can be created using a simple focusing algorithm, so we can optimize for the inclusion of the
quiet zone straight away. To retain the focus point we set a negative weight for the pressure, i.e. maximizing the
pressure.

[5]: start = levitate.complex(array.focus_phases(haptics_pos))
haptics_result = levitate.optimization.minimize(

p * (-1)@haptics_pos + (p + v * 1e3)@trap_pos,
array, start_values=start, variable_amplitudes=True

)

/home/docs/checkouts/readthedocs.org/user_builds/levitate/envs/stable/lib/python3.7/
→˓site-packages/levitate/fields/_transformers.py:268: RuntimeWarning: invalid value␣
→˓encountered in true_divide
jacobians = jacobians * (np.conjugate(values) / abs_values)[self._val_reshape]

Finally, we visualize the individual fields, as well as the superposed field.

[6]: array.visualize.append('pressure')
array.visualize(

trap_result, haptics_result, haptics_result * 0.3 + trap_result * 0.7,
labels=['Trap', 'Haptics', 'Combined']

).show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

3.4 Visualizing the force around a trap

This example show how to easily visualize the radiation force in the vicinity of an object.

[1]: import numpy as np
import levitate

[2]: pos = np.array([0, 0, 60e-3])
array = levitate.arrays.RectangularArray(16)
state = levitate.complex(array.focus_phases(pos) + array.signature(stype='twin'))

[3]: radii = [1e-3, 2e-3, 4e-3, 8e-3, 16e-3]
for radius in radii:

(continues on next page)

6

(continued from previous page)

array.force_diagram.append([pos, {'radius': radius, 'name': '{} mm'.format(radius␣
→˓* 1e3)}])
array.force_diagram(state).show()

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

4 API Documentation

Levitate, a python package for simulating acoustic levitation using ultrasonic transducer arrays.

The API consists of four main modules, and a few supporting modules. The main modules contain models to handle
transducers and transducer arrays, in the transducers and arrays modules respectively, algorithms to calculate
physical properties in the fields module, and some numerical optimization functions in the optimization
module. There is also a visualizers module with some convenience function to show various fields, and some
analysis tools in analysis. It is possible to use different materials or material properties from the materials
module.

The hardware module includes definitions with array geometries corresponding to some physical prototypes, and
python-c++ combined setup to control Ultrahaptics physical hardware directly from python. This implementation
of Ultrahaptics control from python is not officially supported by Ultrahaptics, and only enables a very limited
subset of the research SDK.

4.1 Transducers

Handling of individual transducers and their directivities.

This module contains classes describing how individual transducer elements radiate sound, e.g. waveforms and
directivities. This is also where the various spatial properties, e.g. derivatives, are implemented. Most calculations
in this module are fully vectorized, so the models can calculate sound fields for any number of source positions
and receiver positions at once.

TransducerModel Base class for ultrasonic single frequency transducers.
PointSource Point source transducers.
PlaneWaveTransducer Class representing planar waves.
CircularPiston Circular piston transducer model.
CircularRing Circular ring transducer model.
TransducerReflector Class for transducers with planar reflectors.

class levitate.transducers.TransducerModel(freq=40000.0, p0=6,
medium=Air(rho=1.204082071218662,
dynamic_viscosity=1.85e-05, c=343.23714360505863),
physical_size=0.01)

Base class for ultrasonic single frequency transducers.

Parameters

• freq (float, default 40 kHz) – The resonant frequency of the transducer.

• p0 (float, default 6 Pa) – The sound pressure created at maximum amplitude at
1m distance, in Pa. Note: This is not an rms value!

• medium (Material) – The medium in which the array is operating.

• physical_size (float, default 10e-3) – The physical dimentions of the trans-
ducer. Mainly used for visualization and some geometrical assumptions.

7

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Variables

• ~TransducerModel.k (float) – Wavenumber in the medium.

• ~TransducerModel.wavelength (float) – Wavelength in the medium.

• ~TransducerModel.omega (float) – Angular frequency.

• ~TransducerModel.freq (float) – Wave frequency.

pressure(source_positions, source_normals, receiver_positions, **kwargs)
Calculate the complex sound pressure from the transducer.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

Returns out (numpy.ndarray) – The pressure at the locations, shape source_positions.
shape[1:] + receiver_positions.shape[1:].

pressure_derivs(source_positions, source_normals, receiver_positions, orders=3, **kwargs)
Calculate the spatial derivatives of the greens function.

Calculates Cartesian spatial derivatives of the pressure Green’s function. Should be implemented by
concrete subclasses.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the shape
(M,) + source_positions.shape[1:] + receiver_positions.shape[1:].
where M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

class levitate.transducers.PointSource(freq=40000.0, p0=6, medium=Air(rho=1.204082071218662,
dynamic_viscosity=1.85e-05, c=343.23714360505863),
physical_size=0.01)

Point source transducers.

A point source is in this context defines as a spherically spreading wave, optionally with a directivity. On its
own this class defines a monopole, but subclasses are free to change the directivity to other shapes.

The spherical spreading is defined as

𝐺(𝑟) =
𝑒𝑖𝑘𝑟

𝑟

where 𝑟 is the distance from the source, and 𝑘 is the wavenumber of the wave.

8

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

directivity(source_positions, source_normals, receiver_positions)
Evaluate transducer directivity.

Subclasses will preferably implement this to create new directivity models. Default implementation is
omnidirectional sources.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

Returns out (numpy.ndarray) – The amplitude (and phase) of the directivity, shape
source_positions.shape[1:] + receiver_positions.shape[1:].

pressure_derivs(source_positions, source_normals, receiver_positions, orders=3, **kwargs)
Calculate the spatial derivatives of the greens function.

This is the combination of the derivative of the spherical spreading, and the derivatives of the directivity,
including source strength.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the (M,
) + source_positions.shape[1:] + receiver_positions.shape[1:]. where
M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

wavefront_derivatives(source_positions, receiver_positions, orders=3)
Calculate the spatial derivatives of the spherical spreading.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (ndarray) – Array with the calculated derivatives. Has the shape (M,
) + source_positions.shape[1:] + receiver_positions.shape[1:]. where
M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

9

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

directivity_derivatives(source_positions, source_normals, receiver_positions, orders=3)
Calculate the spatial derivatives of the directivity.

The default implementation uses finite difference stencils to evaluate the derivatives. In principle this
means that customized directivity models does not need to implement their own derivatives, but can
do so for speed and precision benefits.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the shape
(M,) + source_positions.shape[1:] + receiver_positions.shape[1:].
where M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

spherical_harmonics(source_positions, source_normals, receiver_positions, orders=0, **kwargs)
Expand sound field in spherical harmonics.

Performs a spherical harmonics expansion of the sound field created from the transducer model. The
expansion is centered at the receiver position(s), and calculated by translating spherical wavefronts
from the source position(s).

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of spherical harmonics coefficients to calculate.

Returns coefficients (numpy.ndarray) – Array with the calculated expansion coefficients.
Has the shape (M,) + source_positions.shape[1:] + receiver_positions.
shape[1:], where M=len(SphericalHarmonicsIndexer(orders)), see
SphericalHarmonicsIndexer for details on the structure of the coefficients.

class levitate.transducers.TransducerReflector(transducer, plane_intersect=(0, 0, 0),
plane_normal=(0, 0, 1), reflection_coefficient=1,
*args, **kwargs)

Class for transducers with planar reflectors.

This class can be used to add reflectors to all transducer models. This uses the image source method, so only
infinite planar reflectors are possible.

Parameters

• transducer (TrnsducerModel instance or (sub)class) – The base transducer to reflect.
If passed a class it will be instantiated with the remaining arguments not used by the
reflector.

10

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

• plane_intersect (array_like, default (0, 0, 0)) – A point which the reflec-
tion plane intersects.

• plane_normal (array_like, default (0,0,1)) – 3 element vector with the plane
normal.

• reflection_coefficient (complex float, default 1) – Reflection coefficient
to tune the magnitude and phase of the reflection.

Returns transducer – The transducer model with reflections.

pressure_derivs(source_positions, source_normals, receiver_positions, *args, **kwargs)
Calculate the spatial derivatives of the greens function.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the shape
(M,) + source_positions.shape[1:] + receiver_positions.shape[1:].
where M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

spherical_harmonics(source_positions, source_normals, receiver_positions, *args, **kwargs)
Evaluate the spherical harmonics expansion at a point.

Mirrors the sources in the reflection plane and calculates the superposition of the expansions from the
combined sources. For the full documentation of the parameters and output format, see the documen-
tation of the spherical harmonics method of the underlying transducer model.

class levitate.transducers.PlaneWaveTransducer(freq=40000.0, p0=6,
medium=Air(rho=1.204082071218662,
dynamic_viscosity=1.85e-05,
c=343.23714360505863), physical_size=0.01)

Class representing planar waves.

This is not representing a physical transducer per se, but a traveling plane wave.

pressure_derivs(source_positions, source_normals, receiver_positions, orders=3, **kwargs)
Calculate the spatial derivatives of the greens function.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

11

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the shape
((M,) + source_positions.shape[1:] + receiver_positions.shape[1:].
where M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

class levitate.transducers.CircularPiston(effective_radius, *args, **kwargs)
Circular piston transducer model.

Implementation of the circular piston directivity 𝐷(𝜃) = 2𝐽1(𝑘𝑎 sin 𝜃)
𝑘𝑎 sin 𝜃 .

Parameters

• effective_radius (float) – The radius 𝑎 in the above.

• **kwargs – See TransducerModel

Note: This class has no implementation of analytic jacobians yet, and is much slower to use than other
models.

directivity(source_positions, source_normals, receiver_positions)
Evaluate transducer directivity.

Returns 𝐷(𝜃) = 2𝐽1(𝑘𝑎 sin 𝜃)/(𝑘𝑎 sin 𝜃) where 𝑎 is the effective_radius of the transducer, 𝑘 is
the wavenumber of the transducer (k), 𝜃 is the angle between the transducer normal and the vector from
the transducer to the receiving point, and and 𝐽1 is the first order Bessel function.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

Returns out (numpy.ndarray) – The amplitude (and phase) of the directivity, shape
source_positions.shape[1:] + receiver_positions.shape[1:].

class levitate.transducers.CircularRing(effective_radius, *args, **kwargs)
Circular ring transducer model.

Implementation of the circular ring directivity 𝐷(𝜃) = 𝐽0(𝑘𝑎 sin 𝜃).

Parameters

• effective_radius (float) – The radius 𝑎 in the above.

• **kwargs – See TransducerModel

directivity(source_positions, source_normals, receiver_positions)
Evaluate transducer directivity.

Returns 𝐷(𝜃) = 𝐽0(𝑘𝑎 sin 𝜃) where 𝑎 is the effective_radius of the transducer, 𝑘 is the wavenum-
ber of the transducer (k), 𝜃 is the angle between the transducer normal and the vector from the transducer
to the receiving point, and 𝐽0 is the zeroth order Bessel function.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

12

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

Returns out (numpy.ndarray) – The amplitude (and phase) of the directivity, shape
source_positions.shape[1:] + receiver_positions.shape[1:].

directivity_derivatives(source_positions, source_normals, receiver_positions, orders=3)
Calculate the spatial derivatives of the directivity.

Explicit implementation of the derivatives of the directivity, based on analytical differentiation.

Parameters

• source_positions (numpy.ndarray) – The location of the transducer, as a (3, . . .)
shape array.

• source_normals (numpy.ndarray) – The look direction of the transducer, as a (3,
. . .) shape array.

• receiver_positions (numpy.ndarray) – The location(s) at which to evaluate the
radiation, shape (3, . . .). The first dimension must have length 3 and represent the
coordinates of the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (numpy.ndarray) – Array with the calculated derivatives. Has the shape
(M,) + source_positions.shape[1:] + receiver_positions.shape[1:].
where M is the number of spatial derivatives, see num_spatial_derivatives and
spatial_derivative_order.

4.2 Arrays

Handling of transducer arrays, grouping multiple transducer elements.

The main class is the TransducerArray class, but other classes exist to simplify the creation of the transducer
positions for common array geometries.

TransducerArray Base class to handle transducer arrays.
NormalTransducerArray Transducer array with a clearly defined normal.
RectangularArray TransducerArray implementation for rectangular ar-

rays.
SphericalCapArray Transducer array implementation for spherical caps.
DoublesidedArray TransducerArray implementation for doublesided ar-

rays.

class levitate.arrays.TransducerArray(positions, normals, transducer=None, medium=None,
**kwargs)

Base class to handle transducer arrays.

This class has no notion of the layout. If possible, try to use a more specific implementation instead.

Parameters

• positions (numpy.ndarray) – The positions of the transducer elements in the array,
shape 3xN.

• normals (numpy.ndarray) – The normals of the transducer elements in the array, shape
3xN.

• transducer – An object of levitate.transducers.TransducerModel or a sub-
class. If passed a class it will create a new instance.

13

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

• **kwargs – All additional keyword arguments will be passed to the a transducer class
used when instantiating a new transducer model. Note that this will have no effect on
already instantiated transducer models.

Variables

• ~TransducerArray.num_transducers (int) – The number of transducers used.

• ~TransducerArray.positions (numpy.ndarray) – As above.

• ~TransducerArray.normals (numpy.ndarray) – As above.

• ~TransducerArray.transducer (TransducerModel) – An instance of a specific
transducer model implementation.

• ~TransducerArray.freq (float) – Frequency of the transducer model.

• ~TransducerArray.omega (float) – Angular frequency of the transducer model.

• ~TransducerArray.k (float) – Wavenumber in air, corresponding to freq.

• ~TransducerArray.wavelength (float) – Wavelength in air, corresponding to
freq.

class ArrayVisualizer(array, *args, **kwargs)
Visualizations of a trandcuer array.

It is possible to set an item using either just a trace specifier, e.g. “Pressure”, which create the appro-
priate trace with default arguments. If arguments are required or wanted, set the item to a tuple where
the first element is the trace specifier, and subsequent elements are the arguments. If the last element
in the tuple is a dictionary, it will be used as keyword arguments for the trace type.

__call__(*complex_transducer_amplitudes, **kwargs)
Call self as a function.

class ForceDiagram(*args, scale_to_gravity=True, include_gravity=True, **kwargs)
__call__(*complex_transducer_amplitudes, **kwargs)

Call self as a function.

focus_phases(focus)
Focuses the phases to create a focus point.

Parameters focus (array_like) – Three element array with a location where to focus.

Returns phases (numpy.ndarray) – Array with the phases for the transducer elements.

signature(position, phases, stype=None)
Calculate the phase signature of the array.

The signature of an array if the phase of the transducer elements when the phase required to focus all
elements to a specific point has been removed.

Parameters

• position (array_like) – Three element array with a position for where the signature
is relative to.

• phases (numpy.ndarray) – The phases of which to calculate the signature.

Returns signature (numpy.ndarray) – The signature wrapped to the interval [-pi, pi].

pressure_derivs(positions, orders=3)
Calculate derivatives of the pressure.

Calculates the spatial derivatives of the pressure from all individual transducers in a Cartesian coordi-
nate system.

Parameters

14

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

• positions (numpy.ndarray) – The location(s) at which to evaluate the derivatives,
shape (3, . . .). The first dimension must have length 3 and represent the coordinates of
the points.

• orders (int) – How many orders of derivatives to calculate. Currently three orders
are supported.

Returns derivatives (ndarray) – Array with the calculated derivatives. Has the shape (M,
N, . . .) where M is the number of spatial derivatives, and N is the number of transducers,
see num_spatial_derivatives and spatial_derivative_order, and the remain-
ing dimensions are the same as the positions input with the first dimension removed.

spherical_harmonics(positions, orders=0)
Spherical harmonics expansion of transducer sound fields.

The sound fields generated by the individual transducers in the array are expanded in spherical har-
monics around the positions specified. The coefficients are calculated using analytical translation of
the transducer radiation patterns. This is a simplified calculation which will not account for the local
directivity curve, only an overall scaling for each transducer-position combination.

Parameters

• positions (numpy.ndarray) – The location(s) at which to evaluate the derivatives,
shape (3, . . .). The first dimension must have length 3 and represent the coordinates of
the points.

• orders (int, default 0) – The maximum order to expand to.

Returns spherical_harmonics_coefficients (numpy.ndarray) – Array with the
calculated expansion coefficients. The order of the coefficients are de-
scribed in SphericalHarmonicsIndexer. Has shape (M, N, . . .) where
M=len(SphericalHarmonicsIndexer(orders)), N is the number of transduc-
ers in the array, and the remaining dimensions are the same as the positions input with
the first dimension removed.

request(requests, position)
Evaluate a set of requests.

This takes a mapping (e.g. dict) of requests, and evaluates them at a given position. This is independent
of the current transducer state. If a certain quantity should be calculated with regards to the current
transducer state, use a FieldImplementation from the fields module.

Parameters

• position (ndarray) – The position where to calculate the requirements needed,
shape (3,. . .).

• requests (mapping, e.g. dict) – A mapping of the desired requests. The keys in
the mapping should start with the desired output, and the value indicates some kind of
parameter set. Possible requests listed below:

pressure_derivs A number of spatial derivatives of the pressure. Should contain
the maximum order of differentiation, see pressure_derivs.

spherical_harmonics Spherical harmonics coefficients for an expansion of
the pressure. Should contain the maximum order of expansion, see
spherical_harmonics.

Returns evaluated_requests (dict) – A dictionary of the set of calculated data, according to
the requests.

class levitate.arrays.NormalTransducerArray(positions, normals, offset=(0, 0, 0), normal=(0, 0, 1),
rotation=0, **kwargs)

Transducer array with a clearly defined normal.

This is mostly intended as a base class for other implementations. The advantage is that a simple arrangement
can be created assuming a normal along the z-axis, which is then rotated and moved to the desired orientation.

15

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

The positions and normals of the transducers should be input assuming that the overall normal for the array
is along the z-axis. The positions and normals will be rotated around the origin to give the desired overall
normal. This rotation will take place along the intersection line of the plane specificed by the desired normal,
and the xy-plane. If rotation is desired, the positions are further rotated using the normal as the rotation axis.
Finally an offset is applied to the entire array.

Parameters

• positions (numpy.ndarray) – The positions of the transducer elements in the ar-
ray, shape 3xN.

• normals (numpy.ndarray) – The normals of the transducer elements in the array,
shape 3xN (or 3 elements which will broadcast).

• offset (3 element array_like, default (0, 0, 0)) – The location of the
center of the array.

• normal (3 element array_like, default (0, 0, 1)) – The normal of the
overall array.

• rotation (float, default 0) – The in-plane rotation of the array around the nor-
mal.

signature(position=None, *args, stype=None, **kwargs)
Calculate phase signatures of the array.

The signature of an array if the phase of the transducer elements when the phase required to focus
all elements to a specific point has been removed. If stype if set to one of the available signatures:
‘twin’, ‘vortex’, or ‘bottle’, the corresponding signature is returned.

The signatures and the additional keyword parameters for them are:

Current signature (stype=None) Calculates the current phase signature. See TransducerArray.
signature

phases (numpy.ndarray, optional) The phases of which to calculate the signature. Will de-
fault to the current phases in the array.

Twin signature (stype='twin') Calculates the twin trap signature which shifts the phase of half of
the elements by pi, splitting the array along a straight line.

angle (float, optional) The angle between the x-axis and the dividing line. Default is to create
a line perpendicular to the line from the center of the array to position.

Vortex signature (stype='vortex') Calculates the vortex trap signature which phase shifts the el-
ements in the array according to their angle in the coordinate plane.

angle (float, optional) Additional angle to rotate the phase signature with.

Bottle signature (stype='bottle') Calculates the bottle trap signature which phase shifts the ele-
ments in the array according to their distance from the center, creating an inner zone and an outer
zone of equal area with a relative shift of pi.

radius (float, optional) A custom radius to use for the division of transducers. The default is
to use equal area partition based on the rectangular area occupied by each transducer. This
gives the same number of transducers in the two groups for square arrays.

Parameters

• position (array_like) – Three element array with a location for where the
signature is relative to.

• stype (None, 'twin', 'bottle', 'vortex'. Default None) – Chooses
which type of signature to calculate.

Returns signature (numpy.ndarray) – The signature wrapped to the interval [-pi, pi].

16

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

class levitate.arrays.RectangularArray(shape=16, spread=0.01, **kwargs)
TransducerArray implementation for rectangular arrays.

Defines the locations and normals of elements (transducers) in an array. See NormaltransducerArray for
documentation of roration and transslation options.

Parameters

• shape (int or (int, int), default 16) – The number of transducer ele-
ments. Passing a single int will create a square array.

• spread (float, default 10e-3) – The distance between the array elements.

class levitate.arrays.SphericalCapArray(radius, rings, spread=0.01, packing='distance', **kwargs)
Transducer array implementation for spherical caps.

The transducers will be placed on a virtual spherical surface, i.e. on the same distance from a given point
in space. Control the overall shape of the array with the radius, rings, and spead parameters. See
NormalTransdcerArray for details on the overall placement of the array, e.g. rotations and offsets.

There are many ways to pack transdcuers on a spherical surface. The ‘distance’ method will place the
transducers on concentric rings where the distance between each ring is pre-determined. Each ring will have
as many transducers as possible for the given ring size. This will typically pack the transducers densely, and
the outer dimentions of the array is quite consistent. The ‘count’ method will use a pre-determined number
of transducers in each ring, with 6 additional transducers for each successive ring. The inter-ring distance
will be set to fit the requested number of transducers. This method will deliver a pre-determined number of
transducers, but will not be as dense. If too many rings are requested, the ‘count’ method will fill a half-spere
with transducers and then stop. The ‘distance’ method can fill the entire sphere with transducers.

Parameters

• radius (float) – The curvature of the spherical cap, i.e. how for away the focus is.

• rings (int) – Number of consecutive rings of transducers in the array.

• packing (str, default 'distance') – Controlls which packing method is used.
One of ‘distance’ or ‘count’, see above.

• spread (float, default 10e-3) – Controls the minimum spacing between indi-
vidual transducers.

class levitate.arrays.DoublesidedArray(array, separation, normal=(0, 0, 1), offset=(0, 0, 0), twist=0,
**kwargs)

TransducerArray implementation for doublesided arrays.

Creates a doublesided array based on mirroring a singlesided array. This can easily be used to create standard
doublesided arrays by using the same normal for the mirroring as for the original array. If a different normal
is used it is possible to create e.g. v-shaped arrays.

1) The singlesided array is “centered” at the origin, where “center” is defined as the mean coordinate of
the elements.

2) The singlesided array is shifted with half of the separation in the opposite direction of the normal to
create the “lower” half.

3) The “upper” half is created by mirroring the “lower” half in the plane described by the normal.

4) Both halves are offset with a specified vector.

Note that only the orientation of the initial array matters, not the overall position.

Parameters

• array (Instance or (sub)class of TransducerArray.) – The singlesided object used
to the creation of the doublesided array. Classes will be instantiated to generate the
array, using all input arguments except array, separation, and offset.

• separation (float) – The distance between the two halves, along the normal.

17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/library/functions.html#float

• offset (array_like, 3 elements) – The placement of the center between the
two arrays.

• normal (array_like, 3 elements) – The normal of the reflection plane.

• twist (float, default 0) – By how much the two halves are rotated compared
to each other, in radians.

signature(position=None, *args, stype=None, **kwargs)
Calculate phase signatures of the array.

The signature of an array if the phase of the transducer elements when the phase required to focus all
elements to a specific point has been removed. If stype if set to one of the available signatures the
corresponding signature is returned. The signatures of the array used when creating the doublesided
array are also available.

The signatures and the additional keyword parameters for them are:

Current signature (stype=None) Calculates the current phase signature. See TransducerArray.
signature

phases (numpy.ndarray, optional) The phases of which to calculate the signature. Will de-
fault to the current phases in the array.

Doublesided signature (stype='doublesided') Calculates the doublesided trap signature which
shifts the phase of one side of the array half of the elements by pi.

Parameters

• position (array_like) – Three element array with a location for where the
signature is relative to.

• stype (None, 'doublesided', etc. Default None) – Chooses which type
of signature to calculate.

Returns signature (numpy.ndarray) – The signature wrapped to the interval [-pi, pi].

4.3 Fields

A collection of levitation related mathematical implementations.

The fields is one of the most important parts of the package, containing implementations of various ways to cal-
culate levitate-related physical properties. To simplify the management and manipulation of the implemented
fields they are wrapped in an additional abstraction layer. The short version is that the classes implemented in the
fields module will not return objects of the called class, but typically objects of Field. These objects support
algebraic operations, like +, *, and abs. The full description of what the different operands do can be found in the
documentation of _field_wrappers.

References

Pressure Complex sound pressure 𝑝.
Velocity Complex sound particle velocity 𝑣.
GorkovPotential Gor'kov's potential 𝑈 .
GorkovGradient Gradient of Gor'kov's potential, ∇𝑈 .
GorkovLaplacian Laplacian of Gor'kov's potential, ∇2𝑈 .
RadiationForce Radiation force calculation for small beads in arbitrary

sound fields.
RadiationForceStiffness Radiation force gradient for small beads in arbitrary

sound fields.
RadiationForceCurl Curl or rotation of the radiation force.

continues on next page

18

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#abs

Table 3 – continued from previous page
RadiationForceGradient Full matrix gradient of the radiation force.
SphericalHarmonicsForce Spherical harmonics based radiation force.
SphericalHarmonicsForceGradient Spatial gradient of the total spherical radiation force.
SphericalHarmonicsExpansion Spherical harmonics expansion coefficients of the

sound pressure.
SphericalHarmonicsExpansionGradient Spatial gradient of spherical harmonics expansion co-

efficients.

4.3.1 Sound Fields

class levitate.fields.Pressure(array)
Complex sound pressure 𝑝.

Calculates the complex-valued sound pressure.

Parameters array (TransducerArray) – The object modeling the array.

class levitate.fields.Velocity(array, *args, **kwargs)
Complex sound particle velocity 𝑣.

Calculates the sound particle velocity

𝑣 =
1

𝑗𝜔𝜌
∇𝑝

from the relation 𝑣̇ = 𝜌∇𝑝 applied for monofrequent sound fields. This is a vector value using a Cartesian
coordinate system.

Parameters array (TransducerArray) – The object modeling the array.

class levitate.fields.SphericalHarmonicsExpansion(array, orders, *args, **kwargs)
Spherical harmonics expansion coefficients of the sound pressure.

The expansion coefficients up to a certain order, where the complex amplitudes of the transducers will be
accounted for.

Parameters

• array (TransducerArray) – The object modeling the array.

• orders (int) – The number of expansion orders to include.

class levitate.fields.SphericalHarmonicsExpansionGradient(array, orders, *args, **kwargs)
Spatial gradient of spherical harmonics expansion coefficients.

Gives the Cartesian gradient of the expansion coefficient with respect to the expansion center. See
SphericalHarmonicsExpansion for documentation of parameters.

Parameters

• array (TransducerArray) – The object modeling the array.

• orders (int) – The number of expansion orders to include.

19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

4.3.2 Radiation Force

class levitate.fields.RadiationForce(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Radiation force calculation for small beads in arbitrary sound fields.

Calculates the radiation force on a small particle in a sound field which can have both strong standing wave
components or strong traveling wave components. The force components 𝑞 = 𝑥, 𝑦, 𝑧 are calculated as

𝐹𝑞 = − 𝜋

𝑘5
𝜅0ℜ

{︂
𝑖𝑘2Ψ0𝑝

𝜕𝑝*

𝜕𝑞
+ 𝑖𝑘2Ψ1𝑝

* 𝜕𝑝

𝜕𝑞

+ 3𝑖Ψ1

(︂
𝜕𝑝

𝜕𝑥

𝜕2𝑝*

𝜕𝑥𝜕𝑞
+

𝜕𝑝

𝜕𝑦

𝜕2𝑝*

𝜕𝑦𝜕𝑞
+

𝜕𝑝

𝜕𝑧

𝜕2𝑝*

𝜕𝑧𝜕𝑞

)︂}︂
where

Ψ0 = −2(𝑘𝑎)6

9

(︂
𝑓2
1 +

𝑓2
2

4
+ 𝑓1𝑓2

)︂
− 𝑖

(𝑘𝑎)3

3
(2𝑓1 + 𝑓2)

Ψ1 = − (𝑘𝑎)6

18
𝑓2
2 + 𝑖

(𝑘𝑎)3

3
𝑓2

𝑓1 = 1 − 𝜅𝑝

𝜅0
, 𝑓2 = 2

𝜌𝑝 − 𝜌0
2𝜌𝑝 + 𝜌0

This is more suitable than the Gor’kov formulation for use with progressive wave fiends, e.g. single sided
arrays, see [Sapozhnikov]. The actual implementation uses a further algebraic simplification of the above
expresion.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

class levitate.fields.RadiationForceGradient(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Full matrix gradient of the radiation force.

Calculates the full gradient matrix of the radiation force on a small spherical bead. Component (𝑖, 𝑗) in
the matrix is 𝜕𝐹𝑖

𝜕𝑞𝑗
i.e. the first index is force the force components and the second index is for derivatives.

This is based on analytical differentiation of the radiation force on small beads from [Sapozhnikov], see
RadiationForce.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

class levitate.fields.RadiationForceStiffness(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Radiation force gradient for small beads in arbitrary sound fields.

Calculates the non-mixed spatial derivatives of the radiation force,

(
𝜕𝐹𝑥

𝜕𝑥
,
𝜕𝐹𝑦

𝜕𝑦
,
𝜕𝐹𝑧

𝜕𝑧
)

where 𝐹 is the radiation force by [Sapozhnikov], see RadiationForce.

Parameters

• array (TransducerArray) – The object modeling the array.

20

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

class levitate.fields.RadiationForceCurl(*args, **kwargs)
Curl or rotation of the radiation force.

Calculates the curl of the radiation force field as

(
𝜕𝐹𝑧

𝜕𝑦
− 𝜕𝐹𝑦

𝜕𝑧
,
𝜕𝐹𝑥

𝜕𝑧
− 𝜕𝐹𝑧

𝜕𝑥
,
𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
)

where 𝐹 is the radiation force by [Sapozhnikov], see RadiationForce.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

4.3.3 Gor’kov

class levitate.fields.GorkovPotential(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Gor’kov’s potential 𝑈 .

Calculates the Gor’kov potential [Gorkov]

𝑈 =
𝑉

4
(𝑓1𝜅0|𝑝|2 −

3

2
𝑓2𝜌0|𝑣|2)

where

𝑓1 = 1 − 𝜅𝑝

𝜅0
, 𝑓2 = 2

𝜌𝑝 − 𝜌0
2𝜌𝑝 + 𝜌0

and 𝑉 is the volume of the particle. Note that this is only a suitable measure for small particles, i.e. 𝑘𝑎 << 1,
where 𝑎 is the radius of the particle.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

class levitate.fields.GorkovGradient(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Gradient of Gor’kov’s potential, ∇𝑈 .

Calculates the Cartesian spatial gradient of Gor’kov’s potential, see GorkovPotential and [Gorkov]. This
is a vector value used to calculate the radiation force as

𝐹 = −∇𝑈.

Note that this value is not suitable for sound fields with strong traveling wave components. If this is the case,
use the RadiationForce field instead.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

class levitate.fields.GorkovLaplacian(array, radius=0.001, material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350), *args, **kwargs)

Laplacian of Gor’kov’s potential, ∇2𝑈 .

This calculates the Cartesian parts of the Laplacian of Gor’kov’s potential, see GorkovPotential and
[Gorkov]. This is not really the Laplacian, since the components are not summed. The results can be seen
as the local linear spring stiffness of the radiation force.

Note that this value is not suitable for sound fields with strong traveling wave components. If this is the case,
use the RadiationForceStiffness field instead.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float, default 1e-3) – Radius of the spherical beads.

• material (Material) – The material of the sphere, default styrofoam.

4.3.4 Spherical Harmonics Forces

class levitate.fields.SphericalHarmonicsForce(array, radius, orders=None,
material=Styrofoam(rho=25, poisson_ratio=0.35,
c=2350), scattering_model='Hard sphere', *args,
**kwargs)

Spherical harmonics based radiation force.

Expands the local sound field in spherical harmonics and calculates the radiation force in the spherical
harmonics domain. The expansion coefficients are calculated using superposition of the translated expan-
sions of the transducer radiation patterns. The radiation force is calculated using a similar derivation as
[Sapozhnikov], but without any plane wave decomposition.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float) – Radius of the spherical beads.

• orders (int) – The number of force orders to include. Note that the sound field will
be expanded at one order higher that the force order. Will default to floor(ka) + 3,
where k is the wavenumber and a is the radius.

• material (Material) – The material of the sphere, default styrofoam.

• scattering_model – Chooses which scattering model to use. Currently Hard
sphere, Soft sphere, and Compressible sphere are implemented.

class levitate.fields.SphericalHarmonicsForceGradient(*args, **kwargs)
Spatial gradient of the total spherical radiation force.

The three Cartesian derivatives of the radiation force on a spherical object, calculated using spherical har-
monics expansion of the sound field. See SphericalHarmonicsForce for details on the parameters.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float) – Radius of the spherical beads.

• orders (int) – The number of force orders to include. Note that the sound field will
be expanded at one order higher that the force order. Will default to floor(ka) + 3,
where k is the wavenumber and a is the radius.

• material (Material) – The material of the sphere, default styrofoam.

• scattering_model – Chooses which scattering model to use. Currently Hard
sphere, Soft sphere, and Compressible sphere are implemented.

22

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

class levitate.fields.SphericalHarmonicsForceDecomposition(array, radius, orders=None,
material=Styrofoam(rho=25,
poisson_ratio=0.35, c=2350),
scattering_model='Hard sphere',
*args, **kwargs)

Radiation force decomposed in spherical harmonics.

This is mostly intended for research purposes, when the radiation force decomposed in individual spherical
harmonics bases is of interest.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float) – Radius of the spherical beads.

• orders (int) – The number of force orders to include. Note that the sound field will
be expanded at one order higher that the force order. Will default to floor(ka) + 3,
where k is the wavenumber and a is the radius.

• material (Material) – The material of the sphere, default styrofoam.

• scattering_model – Chooses which scattering model to use. Currently Hard
sphere, Soft sphere, and Compressible sphere are implemented.

class levitate.fields.SphericalHarmonicsForceGradientDecomposition(*args, **kwargs)
Spatial gradient of spherical harmonics force decomposition.

Takes the spatial gradient in Cartesian coordinates of each order and mode of the radiation force calculated
from a spherical harmonics expansion. See SphericalHarmonicsForce for details on algorithms and
parameters.

Parameters

• array (TransducerArray) – The object modeling the array.

• radius (float) – Radius of the spherical beads.

• orders (int) – The number of force orders to include. Note that the sound field will
be expanded at one order higher that the force order. Will default to floor(ka) + 3,
where k is the wavenumber and a is the radius.

• material (Material) – The material of the sphere, default styrofoam.

• scattering_model – Chooses which scattering model to use. Currently Hard
sphere, Soft sphere, and Compressible sphere are implemented.

4.4 Optimization

Procedures and algorithms for numerical optimization.

The main method currently in use for acoustic levitation (in this package) is nonlinear numerical minimization of
a cost function. The cost funcion should be constructed using the fields module.

levitate.optimization.phase_alignment(*states, method='parallel', output='states')
Align independet states with respect to the global phase.

Parameters

• *states (arrary_like) – The states to align. THis can be passed in as a sequence
of arguments, of as a (P, N)-shaped array, where P is the number of states and N is
the number of elements in each state.

• method (str, optional, keyword-only) – Which method to use for the align-
ment, default ‘parallel’. Should be one of ‘parallel’ or ‘sequential’, see below for
description.

23

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

• output (str, optional, keyword-only) – What the function should return, de-
fault ‘states’. The string should contain some combination of ‘states’ and/or ‘phases’.
The funtion will return the aligned states and/or the obtained phases in the order found
in the string. If only one of ‘states’ or ‘phases’ is found, only that one will be returned.

A single state for an array is only unique up to a global phase. When multiple states are considered, the
global phase of each state can be shifted to minimize the difference between the states. This function takes
a number of states and finds the optimal phase shifts for each of the states. This can operate in two distinct
modes, a parallel mode and a sequential mode.

Method 'parallel' minimizes the sum of all magnitude differences of the states∑︁
𝑘

∑︁
𝑙

||𝑆𝑘𝑒
𝑖𝜑𝑘 − 𝑆𝑙𝑒

𝑖𝜑𝑙 ||2

or equivalently, maximizes the sum of the states

||
∑︁
𝑘

𝑆𝑘𝑒
𝑖𝜑𝑘 ||2.

Explicitly, this is done by numerically minimizing the cost function

𝑂 = ℜ{𝑐𝐴𝑐*}

where 𝑐 is a vector with the phases written on complex form, and 𝐴[𝑖, 𝑗] = −
∑︀

𝑛 𝑆𝑖[𝑛]𝑆*
𝑗 [𝑛](1− 𝛿𝑖𝑗). This

is suitable for superposition, where we want the states to have the most power output.

Method sequential minimizes the difference between consecutive states in an iterative fashion. In each
step, the difference

||𝑆𝑘𝑒
𝑖𝜑𝑘 − 𝑆𝑘−1𝑒

𝑖𝜑𝑘−1 ||

is minimized. This is done explicitly as

𝜑𝑘 = 𝜑𝑘−1 − arg{
∑︁
𝑛

𝑆𝑘[𝑛]𝑆*
𝑛−1[𝑛]}

with 𝜑0 = 0. This procedure is suitable for state transitions, where the difference between non-consecutive
states is irrelevant.

levitate.optimization.minimize(functions, array, start_values=None, use_real_imag=False,
constrain_transducers=None, variable_amplitudes=False,
callback=None, precall=None, basinhopping=False,
minimize_kwargs=None, return_optim_status=False)

Minimizes a set of cost functions.

The cost function should have the signature f(complex_amplitudes) where complex_amplitudes is an
ndarray with weight of each element in the transducer array. The function should return value, jacobians
where the jacobians are the derivatives of the value w.r.t the transducers as defined in the full documentation.
Also see the documentation of the field wrappers for further details.

This function supports minimization sequences. Pass an iterable of functions to start sequenced min-
imization, e.g. a list of cost functions. The arguments: use_real_imag, variable_amplitudes,
constrain_transducers, callback, precall, basinhopping, and minimize_kwargs can be given
as single values or as iterables of the same length as functions.

Parameters

• functions – The cost function that should be minimized. A single callable, or an
iterable of callables, as described above.

• array (TransducerArray) – The array from which the cost functions are created.

• start_values (complex ndarray, optional) – The start values for the opti-
mization. Will default to 1 for all transducers if not given. Note that the precall for
minimization sequences can overrule this value.

24

https://docs.python.org/3/library/stdtypes.html#str

• use_real_imag (bool, default False) – Toggles if the optimization should run
using the phase-amplitude formulation or the real-imag formulation.

• constrain_transducers (array_like) – Specifies a number of transducers which
are constant elements in the minimization. Will be used as the second argument in
np.delete

• variable_amplitudes (bool) – Toggles the usage of varying amplitudes in the
minimization. If use_real_imag is False ‘phases first’ is also a valid argument for
this parameter. The minimizer will then automatically sequence to optimize first with
fixed then with variable amplitudes, returning only the last result.

• callback (callable) – A callback function which will be called after each
step in sequenced minimization. Return false from the callback to break the se-
quence. Should have the signature : callback(array=array, result=result,
optim_status=opt_res, idx=idx)

• precall (callable) – Initialization function which will be called with the array
phases, amplitudes, and the sequence index before each sequence step. Must return
the initial phases and amplitudes for the sequence step. Default sets the phases and
amplitudes to the solution of the previous sequence step, or the original state for the
first iteration. Should have the signature : precall(complex_amplitudes, idx)

• basinhopping (bool or int) – Specifies if basinhopping should be used. Pass an
int to specify the number of basinhopping iterations, or True to use default value.

• return_optim_status (bool) – Toggles the optim_status output.

• minimize_kwargs (dict) – Extra keyword arguments which will be passed to
scipy.minimize.

Returns

• result (ndarray) – The array phases and amplitudes after minimization. Stacks se-
quenced results in the first dimension.

• optim_status (OptimizeResult) – Scipy optimization result structure. Optional
output, toggle with the corresponding input argument.

4.5 Utilities

This page documents four modules, analysis, visualizers, materials, and hardware.

Some tools for analysis of sound fields and levitation traps.

levitate.analysis.dB(x, power=False)
Convert ratio to decibels.

Converting a ratio to decibels depends on whether the ratio is a ratio of amplitudes or a ratio of powers. For
amplitudes the decibel value is 20 log(|𝑥|), while for power ratios the value is 10 log(|𝑥|) where log is the
base 10 logarithm.

Parameters

• x (numeric) – Linear amplitude or radio, can be complex.

• power (bool, default False) – Toggles if the ration is proportional to power.

Returns L (numeric) – The decibel value.

levitate.analysis.SPL(p)
Convert sound pressure to sound pressure level.

Uses the standard reference value for airborne acoustics: 20 µPa. Note that the input is the pressure amplitude,
not the RMS value.

Parameters p (numeric, complex) – The complex sound pressure amplitude.

25

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#complex

Returns SPL (numeric) – The sound pressure level

levitate.analysis.SVL(u)
Convert sound particle velocity to sound velocity level.

Uses the standard reference value for airborne acoustics: 50 nm/s, which is approximately 20 µPa / c_0 /
rho_0 Note that the input the velocity amplitude(s), not the RMS values.

If the first axis of the velocity input has length 3, it will be assumed to be the three Cartesian components of
the velocity.

Parameters u (numeric, complex) – The complex sound velocity amplitude, or the vector
velocity.

Returns SVL (numeric) – The sound velocity level

levitate.analysis.find_trap(array, state, position, tolerance=1e-05, time_interval=50, path_points=1,
**kwargs)

Find the approximate location of a levitation trap.

Find an approximate position of a acoustic levitation trap close to a starting point. This is done by following
the radiation force in the sound field using an differential equation solver. The differential equation is the
un-physical equation 𝑑𝑥⃗/𝑑𝑡 = 𝐹 (𝑥, 𝑡), i.e. interpreting the force field as a velocity field. This works for
finding the location of a trap and the field line from the starting position to the trap position, but it can not
be seen as a proper kinematic simulation of the system.

The solving of the above equation takes place until the whole time interval is covered, or the tolerance is
met. The tolerance is evaluated using the assumption that the force is zero at the trap, evaluating the distance
from the zero-force position using the force gradient.

Parameters

• array (TransducerArray) – The transducer array to use for the solving.

• state (complex array like) – The complex transducer amplitudes to use for the
solving.

• position (array_like, 3 elements) – The starting point for the solving.

• tolerance (numeric, default 10e-6) – The approximate tolerance of the solu-
tion, i.e. how close should the found position be to the true position, in meters.

• time_interval (numeric, default 50) – The un-physical time of the solution
range in the differential equation above.

• path_points (int, default 1) – Sets the number of points to return the path at.
A single evaluation point will only return the found position of the trap.

Returns trap_pos (numpy.ndarray) – The found trap position, or the path from the starting
position to the trap position.

class levitate.analysis.KineticSimulation(array, t_end=1, radius=0.001,
material=Styrofoam(rho=25, poisson_ratio=0.35,
c=2350), force=None, force_gradient=None,
**solver_kwargs)

Performs kinetic simulations for levitated spherical objects.

Initialize with the relevant parameters. Call the object with a state and a position to start the simulation.
After a simulation, the object stores attributes for the results.

If the simulation is not started at the center of something resembling a trap, the energy tracking will not work
properly.

Variables

• ~KineticSimulation.t (ndarray, shape (T,)) – Time vector for the simu-
lated positions.

26

https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#int

• ~KineticSimulation.position (ndarray, shape (3, T)) – Simulated posi-
tions.

• ~KineticSimulation.velocity (ndarray, shape (3, T)) – Simulated ve-
locities.

• ~KineticSimulation.kinetic_energy (ndarray, shape (T,)) – Simulated
kinetic energy.

• ~KineticSimulation.potential_energy (ndarray, shape (T,)) – Approx-
imate potential energy. Calculated from a linear approximation at the starting posi-
tion.

• ~KineticSimulation.total_energy (ndarray, shape (T,)) – Sum of ki-
netic and potential energy.

__call__(state, initial_position)
Call self as a function.

levitate.analysis.linear_stability_metric(array, radius, force_divergence=None, force_curl=None,
material=Styrofoam(rho=25, poisson_ratio=0.35,
c=2350))

A crude stability metric for traps.

This is based on considering the dynamics of a linear approximation of a trap which has equal axial stiffness.
The metric is larger than one for traps which are empirically stable, and smaller than one for traps which
empirically are unstable. This is not a guaranteed metric, but relies on very heavy assumptions of the trap
behavior. See “Sound Field Design for Transducer Array-Based Acoustic Levitation”, Andersson, 2022,
PhD thesis, for further information.

The output is a field object, which can be called with a state and a position like the other field objects in this
toolbox. The implemented relation is

−27𝜋𝜇2

𝑎𝜌*

∇ · 𝐹
|∇ × 𝐹 |2

where 𝐹 is the force field in the trap, 𝜇 is the dynamic viscosity of the medium, 𝜌* is the density of the
object, and 𝑎 its radius.

4.5.1 Visualization

Visualization classes based on the plotly graphing library.

class levitate.visualizers.Visualizer(array, *traces, display_scale='mm')
insert(index, value)

S.insert(index, value) – insert value before index

class levitate.visualizers.ArrayVisualizer(array, *args, **kwargs)
Visualizations of a trandcuer array.

It is possible to set an item using either just a trace specifier, e.g. “Pressure”, which create the appropriate
trace with default arguments. If arguments are required or wanted, set the item to a tuple where the first
element is the trace specifier, and subsequent elements are the arguments. If the last element in the tuple is
a dictionary, it will be used as keyword arguments for the trace type.

__call__(*complex_transducer_amplitudes, **kwargs)
Call self as a function.

class levitate.visualizers.ForceDiagram(*args, scale_to_gravity=True, include_gravity=True,
**kwargs)

__call__(*complex_transducer_amplitudes, **kwargs)
Call self as a function.

27

4.5.2 Materials

Manages material properties.

Many functions need access to some material properties. In order to ensure that the properties of a specific material
is the same everywhere, they are all collected in classes here.

Pickling

Pickling materials require some special consideration. In general there should be a single set of properties defining
a material, but loading some data which is saved with modified properties will create a conflict. The newly loaded
material will be in a “Local” state, using modified properties different from the global ones. It is recommended to
resolve this by avoiding the problem entirely by modifying the global properties before loading the old data. If this
is not possible or preferable, there are three functions intended to resolve the conflict using either the global or the
local properties.

Note: Updating global material properties will change the properties throughout the entire package, but some
classes (notably the fields) pre-calculate a lot of material-dependent properties. These properties will NOT be
updated after a material update. It is therefore highly recommended to define the material properties once in the
beginning of a session.

class levitate.materials.MaterialMeta(name, bases, dct)
Metaclass for materials.

This metaclass will automatically create the properties defines in the properties variable in the class or
its bases. The properties implement a local/global system, where each instance will default to use the global
properties unless otherwise specified.

static class_instance_property(name, doc=None)
Create a local/global property.

class levitate.materials.Material(**kwargs)
Main base class for materials.

This class handles most of the functionality of the materials in the package. Each material is required to have
(at least) a speed of sound and a density, from which the impedance and the compressibility can be calculated.
In most cases there should only be a single instance of each material class, defining the properties of said
material. Multiple instances might be created while pickling see the section below. If a new material of an
existing material class is created with modified properties, it will also be created in a “Local” state.

property compressibility
Compressibility 1

𝜌𝑐2 , non settable.

property impedance
(Specific) Acoustic (wave) impedance 𝜌𝑐, non settable.

load_from_global()
Load properties from the global state.

Useful only on materials in a local state to resolve conflicts. Replaces the current local properties with
the global properties and goes to global mode, completely removing the stored values.

push_to_global()
Push the local properties to the global state.

Useful only on materials in a local state to resolve conflicts. Replaces the current global properties
with the modified local ones, completely overriding the global properties for all global instances.

classmethod force_all_to_global()
Force all instances of this material to use global properties.

28

Useful to resolve material conflicts by choosing the global state for all instances of the material. Will
never change the global properties, even if called from a locally modified instance.

property c
The (longitudinal) speed of sound in the material, in m/s.

property rho
The density of the material, in kg/m^3.

class levitate.materials.Gas(**kwargs)
Base class for ideal gases.

All ideal gases can determine the wave speed and density from the ambient temperature and pressure using
more basic material constants, see update_properties.

update_properties(temperature=None, pressure=None)
Update the material properties with the ambient conditions.

Sets the material properties of air according to

𝑐 =
√︀
𝛾𝑅𝑇

𝜌 =
𝑃

𝑅𝑇

where 𝑇 is the ambient temperature in Kelvin, 𝑃 is the ambient pressure, 𝛾 is the adiabatic index, and
𝑅 is the specific gas constant for the gas.

Parameters

• temperature (float) – The ambient temperature, in degrees Celsius. Defaults
to 20.

• pressure (float) – The static ambient air pressure, in Pa. Defaults to 101325.

property kinematic_viscosity
Kinematic viscosity, in m^2/s.

property c
The (longitudinal) speed of sound in the material, in m/s.

property dynamic_viscosity
Dynamic viscosity, in Pa * s.

property rho
The density of the material, in kg/m^3.

class levitate.materials.Solid(**kwargs)
Base class for elastic solids.

Solids can support shear waves, which is important for some scattering problems.

property c_transversal
Transversal wave speed.

The speed of sound for transversal waves, i.e. shear waves. Calculated as 𝑐
√︁

1−2𝜈
2−2𝜈 , where 𝜈 is the

Poisson’s ratio.

property c
The (longitudinal) speed of sound in the material, in m/s.

property poisson_ratio
Poisson’s ratio, related to shear wave speed.

property rho
The density of the material, in kg/m^3.

class levitate.materials.Air(**kwargs)
Properties of air.

Has default values:

29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

c = 343.2367605312694
rho = 1.2040847588826422

property c
The (longitudinal) speed of sound in the material, in m/s.

property dynamic_viscosity
Dynamic viscosity, in Pa * s.

property rho
The density of the material, in kg/m^3.

class levitate.materials.Styrofoam(**kwargs)
Properties of styrofoam.

Has default values:

c = 2350
rho = 25
poisson_ratio = 0.35

property c
The (longitudinal) speed of sound in the material, in m/s.

property poisson_ratio
Poisson’s ratio, related to shear wave speed.

property rho
The density of the material, in kg/m^3.

4.5.3 Hardware

Hardware related classes and functions.

Various classes and functions to simulate and interface with physical hardware.

Disclaimer

This module is not related to Ultraleap as a company, and it not part of their SDK. It is simply a non-programmer’s
way around testing everything in C++. Similarly for the other implemented arrays.

Use at your own risk!

DragonflyArray Rectangular array with Ultraleap Dragonfly U5 layout.
AcoustophoreticBoard

data_to_cpp Write data to a file suitable for c++.
data_from_cpp Read data previously written for c++.

levitate.hardware.data_to_cpp(complex_values, filename)
Write data to a file suitable for c++.

Takes numpy data and writes it to a file which is simple to read from c++. Internally uses numpy.tofile
for the actual write.

Parameters

• complex_values (numpy.ndarray) – The complex transducer values for the array.
The order of the transducers must match the internal order of the array.

• filename (string) – The filename of the file to create.

30

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Note:

• The data will be normalized to have a maximum amplitude of 1.

• The data will be written as 64 bit complex floats, i.e. 32 bit real + 32 bit imaginary.

• The data will be conjugated: Ultrahaptics uses a different phase convention.

levitate.hardware.data_from_cpp(file, num_transducers)
Read data previously written for c++.

This is the inverse of data_to_cpp, and is used to read data previously written with said function, or with
similar conventions.

Parameters

• file (String or open file) – The file to read. See numpy.fromfile.

• num_transducers (int) – The number of transducers in the array. This is important
to be able to reshape the data and have the correct number of states in the output.

Returns data (numpy.ndarray) – The data read from the file. Shape (M, N) where M is the
number of states in the file, and N is the number of transducers specified.

Note:

• The data is assumed to be 64 bit complex floats, i.e. 32 bit real + 32 bit imaginary.

• The data will be conjugated: Ultrahaptics uses a different phase convention.

class levitate.hardware.AcoustophoreticBoard(id=None, linearize_amplitude=True,
compensate_phase=True, normalize=False,
use_phase_calibration=True,
use_amplitude_calibration=False, **kwargs)

class levitate.hardware.DragonflyArray(**kwargs)
Rectangular array with Ultraleap Dragonfly U5 layout.

This is a 16x16 element array where the order of the transducer elements are the same as the iteration order
in the Ultraleap SDK. Otherwise behaves exactly like a RectangularArray.

4.6 Field Wrappers

4.6.1 Class list

Public API

These are the only classes and functions regarded as part of the public API, but they will only be used directly
when implementing new algorithm types.

class levitate.fields._wrappers.FieldImplementation(array)
Base class for FieldImplementations.

The attributes listed below are part of the API and should be implemented in subclasses.

Parameters array (TransducerArray) – The array object to use for calculations.

Variables

• ~FieldImplementation.values_require (dict) – Each key in this dictionary
specifies a requirement for the values method. The wrapper classes will manage
calling the method with the specified arguments.

31

https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

• ~FieldImplementation.jacobians_require (dict) – Each key in this dictio-
nary specifies a requirement for the jacobians method. The wrapper classes will
manage calling the method with the specified arguments.

values()
Method to calculate the value(s) for the field.

jacobians()
Method to calculate the jacobians for the field. This method is optional if the implementation is not
used as a cost function in optimizations.

Parameters array (TransducerArray) – The object modeling the array.

class requirement(*args, **kwargs)
Parse a set of requirements.

FieldImplementation objects should define requirements for values and jacobians. This class
parses the requirements and checks that the request can be met upon call. The requirements are stored
as a non-mutable custom dictionary. Requirements can be added to each other to find the combined
requirements.

Keyword Arguments

• complex_transducer_amplitudes – The field requires the actual complex
transducer amplitudes directly. This is a fallback requirement when it is not pos-
sible to implement the field with the other requirements, and no performance op-
timization is possible.

• pressure_derivs_summed – The number of orders of Cartesian spatial deriva-
tives of the total sound pressure field. Currently implemented to third order deriva-
tives. See levitate._indexing.pressure_derivs_order and levitate.
_indexing.num_pressure_derivs for a description of the structure.

• pressure_derivs_summed – Like pressure_derivs_summed, but for individual
transducers.

• spherical_harmonics_summed – A spherical harmonics decomposition of the
total sound pressure field, up to and including the order specified. where remaining
dimensions are determined by the positions.

• spherical_harmonics_individual – Like spherical_harmonics_summed,
but for individual transducers.

Raises NotImplementedError – If one or more of the requested keys is not implemented.

Basic Types

class levitate.fields._wrappers.Field(field, **kwargs)
Primary class for single point, single field.

This is a wrapper class for FieldImplementation to simplify the manipulation and evaluation of the im-
plemented fields. Normally it is not necessary to manually create the wrapper, since it should be done
automagically. Many properties are inherited from the underlying field implementation, e.g. ndim, array,
values, jacobians.

Parameters field (FieldImplementation) – The implemented field to use for calculations.

__call__(complex_transducer_amplitudes, position)
Evaluate the field implementation.

Parameters

• compelx_transducer_amplitudes (complex numpy.ndarray) – Complex
representation of the transducer phases and amplitudes of the array used to create
the field.

32

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/array.html#module-array

• position (array-like) – The position(s) where to evaluate the field. The first
dimension needs to have 3 elements.

Returns values (ndarray) – The values of the implemented field used to create the wrap-
per.

class levitate.fields._wrappers.FieldPoint(field, position, **kwargs)
Position-bound class for single point, single field.

See Field for more precise description.

Parameters

• field (FieldImplementation) – The implemented field to use for calculations.

• position (numpy.ndarray) – The position to bind to.

__call__(complex_transducer_amplitudes)
Evaluate the field implementation.

Parameters compelx_transducer_amplitudes (complex numpy.ndarray) – Com-
plex representation of the transducer phases and amplitudes of the array used to create
the field.

Returns values (ndarray) – The values of the implemented field used to create the wrap-
per.

Magnitude Squared Types

MultiFields

class levitate.fields._wrappers.MultiField(*fields, **kwargs)
Class for multiple fields, single position calculations.

This class collects multiple Field objects for simultaneous evaluation at the same position(s). Since the
fields can use the same spatial structures this is more efficient than to evaluate all the fields one by one.

Parameters *fields (Field) – Any number of Field objects.

__call__(complex_transducer_amplitudes, position)
Evaluate all fields.

Parameters

• complex_transducer_amplitudes (complex numpy.ndarray) – Complex
representation of the transducer phases and amplitudes of the array used to create
the field.

• position (array-like) – The position(s) where to evaluate the fields. The first
dimension needs to have 3 elements.

Returns values (list) – A list of the return values from the individual fields. Depending on
the number of dimensions of the fields, the arrays in the list might not have compatible
shapes.

class levitate.fields._wrappers.MultiFieldPoint(*fields, **kwargs)
Class for multiple field, single fixed position calculations.

This class collects multiple FieldPoint bound to the same position(s) for simultaneous evaluation. Since
the fields can use the same spatial structures this is more efficient than to evaluate all the fields one by one.

Parameters *fields (FieldPoint) – Any number of FieldPoint objects.

Warning: If the class is initialized with fields bound to different points, some of the fields are simply
discarded.

33

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

__call__(complex_transducer_amplitudes)
Evaluate all fields.

Parameters compelx_transducer_amplitudes (complex numpy.ndarray) – Com-
plex representation of the transducer phases and amplitudes of the array used to create
the field.

Returns values (list) – A list of the return values from the individual fields. Depending on
the number of dimensions of the fields, the arrays in the list might not have compatible
shapes.

MultiPoints

Private Classes

These classes are not considered part of the public API, and should not appear other than as superclasses.

class levitate.fields._wrappers.FieldBase(*, transforms=None)
Base class for all field type objects.

This wraps a few common procedures for fields, primarily dealing with preparation and evaluation of require-
ments for fields implementations. The fields support some numeric manipulations to simplify the creation
of variants of the basic types. Not all types of fields support all operations, and the order of operation can
matter in some cases. If unsure if the arithmetics return the desired outcome, print the resulting object to
inspect the new structure.

Note: This class should not be instantiated directly.

class levitate.fields._wrappers.FieldImplementationMeta(clsname, bases, attrs)
Metaclass to wrap FieldImplementation objects in Field objects.

API-wise it is nice to call the implementation classes when requesting a field. Since the behavior of the
objects should change depending on if they are added etc, it would be very difficult to keep track of both the
current state and the actual field in the same top level object. This class will upon object creation instantiate
the called class, but also instantiate and return a Field-type object.

__call__(*cls_args, **cls_kwargs)
Instantiate an Field-type object, using the cls as the base field implementation.

The actual Field-type will be chosen based on which optional parameters are passed. If no parameters
are passed (default) a Field object is returned. If weight is passed a CostField object is returned.
If position is passed a FieldPoint object is returned. If both weight and position is passed a
CostFieldPoint object is returned.

Parameters

• cls (class) – The FieldImplementation class to use for calculations.

• *cls_args – Args passed to the cls.

• **cls_kwargs – Keyword arguments passed to cls.

34

5 Changelog

Changes are documented here.

5.1 Unreleased

5.2 2.4.2 - 2020-03-09

5.2.1 Removed

• Python 3.5 is no longer supported

5.2.2 Added

• Improved hover info on transducer visualizations

• Support for controlling hardware from Interact Lab

• Function to phase align states

5.2.3 Changed

• Force diagrams will now subtract the gravitational force

• Force cone visualization will not include the point in the center

5.3 2.4.1 - 2020-02-17

5.3.1 Added

• Spherical cap array class

5.3.2 Changed

• Visualizers will not allocate memory until used the first time

5.4 Pre 2.4

No changelog was kept beyond this point.

References

[Gorkov] L. P. Gorkov, “On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid” Soviet
Physics Doklady, vol. 6, p. 773, Mar. 1962.

[Sapozhnikov] O. A. Sapozhnikov and M. R. Bailey, “Radiation force of an arbitrary acoustic beam on an elastic
sphere in a fluid” J Acoust Soc Am, vol. 133, no. 2, pp. 661–676, Feb. 2013.

35

	Introduction
	Package Organization and Functionality
	Models
	Algorithms
	Visualization
	Workflow

	Examples
	Simple trap optimization.
	Complicated transducer array setup
	Superposition of two fields
	Visualizing the force around a trap

	API Documentation
	Transducers
	Arrays
	Fields
	Sound Fields
	Radiation Force
	Gor’kov
	Spherical Harmonics Forces

	Optimization
	Utilities
	Visualization
	Materials
	Hardware

	Field Wrappers
	Class list
	Public API
	Basic Types
	Magnitude Squared Types
	MultiFields
	MultiPoints
	Private Classes

	Changelog
	Unreleased
	2.4.2 - 2020-03-09
	Removed
	Added
	Changed

	2.4.1 - 2020-02-17
	Added
	Changed

	Pre 2.4

	References

